
What Can Intelligent SSDs Do for Machine Learning?
Jinyoung Choi, Yu-Ching Hu, Abenezer Wudenhe and Hung-Wei Tseng

Extreme Storage & Computer Architecture Laboratory, Department of Computer Science | North Carolina State University Computer Science

Objective

For more information about Extreme Storage & Computer Architecture Laboratory, please visit http://www.escalab.org/

ML-SSD: The System Architecture and Design

Core MLSSD Layer

We build a MLSSD by extending a 
commercialized datacenter-class SSD. 
We extended the NVMe driver in this 
system to support additional MLSSD 
NVMe commands. This SSD runs our 
modified firmware programs which is 
also compatible with standard NVMe. 
Throughout our tests, the baseline SSD 
achieves 3.2 GB/s bandwidth to the 
host system.

The prototype SSD with the proposed ML-assisted layer

Extended NVMe Stack for Machine Learning

Results

Sample The sample operator chooses a subset of
items from raw data and sends the selected items to
the host computer. This operators can perform
uniform data selection, random data selection, or only
report the most representative data. The sample
operator helps filter repetitive or similar inputs. If the
compute kernel is elastic to the number of records
within the dataset, the sample operator can achieve
the same effect as loop perforation without any code
modification.

Data Packing Operator

Reduction Operator

Sampling Operator

Computer Kernels on Accelerators

Host Application

ML-SSD API

ML-SSD Driver

Interconnect I/O & Storage Interface

ML-SSD Core

SSD Management Layer

NVM Arrays

Accelerators
PCIe

Host Computer

PCIe

Intra-storage
interconnect

Storage Device

ML-SSD API

mlssd_read(HostMem, size)
This API shuffles data pages and stores it in the ‘HostMem’ buffer for the
‘size’. We can avoid redundant data copies by utilizing NVMe’s PRP list
data structure and extents in Ext4 file system.

mlssd_get_sector(fd) This API produces sector lists of the file(‘fd’) based on the logical block
address(LBA) and the number of blocks within the extents.

The shuffle mechanism 1: Using PRP list

PRP1 reg
PRP2 reg

Data Page #1
Data Page #2
Data Page #3
Data Page #4

prp_list[0] 
prp_list[1] 
prp_list[2] … …

Host memoryDevice

PRP1 reg
PRP2 reg

Data Page #1
Data Page #2
Data Page #3
Data Page #4

prp_list[0] 
prp_list[1] 
prp_list[2] … …

Host memoryDevice

Read sequence: #1, #2, #3, #4 … Read sequence: #2, #3, #4, #1 …

Shuffle

Extent[0]
Extent[1]
Extent[2]

Sector #1
Sector #2
Sector #3

Extent[3] Sector #4

Host FS Flash memory
Extent[0]
Extent[1]
Extent[2]

Sector #1
Sector #2
Sector #3

Extent[3] Sector #4

Host FS Flash memory

Shuffle

The shuffle mechanism 2: Using Extents

Read sequence: #1, #2, #3, #4 … Read sequence: #3, #4, #1, #2 …

… … … …

Increase in accelerator performance for 
Machine Learning (ML) applications means 
data input becomes the critical path for ML 
training. Usually, data input consists of 
retrieving data from storage to the CPU, 
preprocess operations such as shuffle, and 
finally transferring data to the ML accelerator. 
Resulting in:

• Underutilizing Accelerators
• Longer Training Time

This project investigates intelligent storage 
devices for addressing the input/shuffling 
preprocess overhead by proposing ML-SSD.

1.06

3.82

1.97

1.00 0.99 1.06

2.12

1.17 1.08
1.66 1.55

0

1

2

3

4

5

C
N
N

(c
ifa
r1
0)

C
N
N
+L
ST
M

(T
w
itt
er
)

k-
m
ea
ns

(R
od
in
ia
)

LS
TM

(IM
D
B)

N
N

(R
od
in
ia
)

R
es
ne
t

(c
ifa
r1
0)

St
re
am

C
lu
st
er

(R
od
in
ia
)

SV
M
Tr
ai
n

(M
ni
st
)

SV
M
Pr
ed
ic
t

(M
ni
st
)

XG
bo
os
t

(M
ni
st
)

av
er
ag
e

Sp
ee

du
p

The core MLSSD layer resides inside the storage device to change data resolutions presented to
applications. MLSSD interacts with existing system I/O interfaces to sup-port the extended
interface for resolution adjustments. MLSSD also works together with the SSD management
layer to locate the desired data. The host system needs an extended kernel driver, and API
functions, for the applications to send requests and exchange data. MLSSD implements the data
shuffling feature in the kernel driver and API layer.

MLSSD hides the latency of altering input datasets with accessing flash chips while taking
advantages of richer internal parallelism, MLSSD accelerates the process of reading data inputs
by 1.55x.

StorageCPU

Accelerator

Input Bound Training

Accelerator Bound Training

Preprocess Transfer

Model Training

Storage Preprocess Transfer

Step N-1 Step N

Model Training

StorageCPU

Accelerator

Preprocess Transfer

Model Training

Storage Preprocess Transfer

Step N-1 Step N

Model Training

0.96 1.04 1.03 1.04 1.01 1.04
1.15 1.07

1.23 1.21

0
0.2
0.4
0.6
0.8
1

1.2
1.4

4 8 16 32 64 128 256 512 1024 2048

Sp
ee

du
p

Read Size (KB)

0.99
1.15

1.32 1.28 1.22

0.73 0.70

0
0.2
0.4
0.6
0.8
1

1.2
1.4

2 4 8 16 32 64 100

Sp
ee

du
p

Read Size (MB)

The result shows that by partition requests into 8 MB chunks, MLSSD can speedup reads
by 1.32x, in addition to the performance gain from moving data adjustments into the SSD.

Data Packing The data packing operator trims the
dataset size by using fewer bytes to express each
item and condenses the layout in memory. This
operator is suitable for datasets using only a small
range within the number space of the original data
type, or the applications which can tolerate some
inaccuracy in the input data, e.g. FP64 to FP32.

The current MLSSD framework supports the following 3 categories of operators working on 
various data types to adjust the resolution to achieve the best performance.

Reduction The reduction operator applies a function
(e.g., average) to groups of input values, usually
neighboring data items in the raw data, and
generate a single output for each group. Thus,
MLSSD only sends out the resulting values of each
group to reduce the amount of data going through the
system interconnect.

The prototype SSD

Speedup in adjusting data resolutions

Shuffle mechanism1: Using PRP list

Shuffle mechanism2: Using Extents

MLSSD

CPU

GPU 
Accelerator

MLSSD in a heterogeneous computer system

Shuffle mechanisms minimize memory copies compared to convention shuffle. Using PRP
list, it shows a speedup of 1.23x when the read size is 1MB.


